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(5) INTRODUCTION:

(5.1) FOCUS. This project focuses on the training of mammography expertise which is
acquired as a result of medical training and experience reading, interpreting and diagnosing
breast lesions in mammograms. Mammography expertise takes years of formal training and
mentoring experience with experts who read and illustrate a variety of abnormalities in
breast images. Although medical training is typically rigorious and systematic, the
mentoring experience during radiology residency in mammography varies widely from one
teaching institution to another. Furthermore, the amount of mammography mentoring
experience radiology residents receive is usually limited to four 4-6 week rotations over 4
years. This means that most radiology residents will read a total of between 1000 and 1500
mammography cases with mentor guidance during residency. We estimate that this amount
of experience falls short of that of experts by a factor of from 33 to 50 times (Nodine,
Kundel, Lauver, Toto, 1996). We know from testing radiology residents at the University
of Pennsylvania that this amount of experience is inadequate to bring them up to diagnostic
performance standards acceptable in clinical practice. For example, AFROC performance of
a sample of our residents using Alternative Receiver Operating Characteristic (AFROC)
methodology was A1=.653 (n= 19) compared to A1=.843 (n=3) for mammographers
(p<.01, Sheffe test, see Resident Study).

(5.2) AIM. The primary aim of this project is to develop a mammography training tool
that will, by using a computer to provide systematic feedback about visual search and
detection of suspicious mammographic findings, improve the expertise of radiology
residents undergoing clinical mammography residency rotation. The visual-search feedback
is based on monitoring the resident's eye position during scanning of a mammogram,
identifying regions containing suspicious findings based on prolonged gaze durations and
highlighting these locations on the mammogram. The resident is then asked to review the
highlighted areas with the help of a decision aid, determine if any abnormal features are
present, and revise the original diagnostic decision. We showed in 1990 (Kundel, Nodine,
Krupinski, 1990) that computer-assisted visual search (CAVS) is effective in improving the
detection of lung nodules. Our goal is to apply CAVS to mammography training to see if
we can enrich the experience of radiology residents during training and improve their
diagnostic expertise.

(6) BODY:

(6.1) OBJECTIVES. The Statement of Work for Years 1 and 2 as stated in the proposal
is as follows:

Technical Objective 1, Develop CAVS as a Perceptual Training Tool:
Months 1-12: Develop a computer-assisted visual search system and digital display
workstation.

Task 1. Program ASL Model 4000 and EYEHEAD to monitor the observer's eye
position relative to head motion for digital mammography displays.

Task 2. Modify eye-position data collection programs (EYEPOS/EYEDAT) to
accommodate visual-dwell detection algorithm. Integrate detection algorithm with
visual feedback of dwell locations on PC display workstation.




Technical Objective 2, Develop a Decision Training Tool: Months 12-
24: Construct a training image set and develop a decision-aid checklist and feedback
system.

Task 3. Collect mammography cases in which no lesions have been detected for at
least three years and cases containing breast lesions. Digitize collected
mammograms and construct the breast-lesion image training set of 160 images.

Task 4. Obtain MAMCAD and integrate training set images into MAMCAD
algorithm and decision-aid checklist.

Task 5. Carry out pilot study to determine the effectiveness of the integration of the
CAVS dwell-detection algorithm with the MAMCAD decision aid checklist
designed to help differentiate true from false positive and negative decisions in the
mammography training task.

(6.2) CHANGES IN RESEARCH PLAN. Because of a 4-month delay in recruting
a research associate, and an unexpected opportunity to obtain a documented set of
mammographic images from the Hospital of the University of Pennsylvania (HUP)
"Technologies" database, we decided to focus Year 1's activities on Technical Objective 2
above. We have already carried out Tasks 3 and 4 under this objective. First, we have
developed a 100 case test set and are in the process of verifying the status of normal,
benign and malignant images (part of Task 3). We are now in the process of acquiring the
HUP "Technologies" database which consists of 200 cases: 35 malignants; 65 benigns;
and, 100 normals, four views each (total of 800 images). These images have been digitized
using a Lumisys scanner (Model 150) at 50 microns. They will be used to supplement the
original test set used in the Resident Study, and to construct a training set of 160 images to
be used with the MAMCAD algorithm and decision-aid checklist (Task 4). Some of these
images will also be useful for evaluating CAVS in the Objective 3.

Technical Objective 1, Tasks 1 &2, will be postponed until the training set is developed and
the Resident Study written up. These two objectives will be completed by the end of grant
year 2. We will submit the Resident Study to RSNA. We estimate that the HUP
"Technologies" film collection, digitization and database documentation will be complete by
the end of the summer of 98. During this time we will also test the computer system
consisting of PCI/Dome Driver/Orwin Electronics display using Windows 95. Both the
database and the PCI test are necessary prerequsites for the CAVS programming. We have
already completed the preliminary testing (part of Technical Objective 1), and are now
ready for CAVS programing.

The advantage of postponing the development of CAVS until year 2 will give us an
opportunity to take advantage of acquiring a "clinically-proven" database of 200
mammography cases, and give the new Research Associate, Ms. Claudia Mello-Thoms, a
chance to familiarlize herself with the project before programming the CAVS.

(6.3) WORK IN PROGRESS. We have submitted an article entitled "Perceptual Skill,
Radiology Expertise and Visual Test Performance with NINA and WALDO" to the journal
"Academic Radiology". It has been accepted for publication and will appear in the August,
1998 issue (see Nodine & Krupinski, 1998, in press, and Appendix 1).

(6.4) SUMMARY of the NINA-WALDO STUDY. This study compared visual
search and perceptual analysis skills of radiologists who are expert at radiology search and
detection vs. lay people using perceptual tests in which the targets of search were NINAs in




Al Hirschfeld's drawings of scenes from the theater, and WALDOs from Martin
Handford's color drawings of people-cluttered scenes taken from history. We found that
radiology expertise did not carry over to search and detection of these targets in the two
perceptual tests. Not only did radiologists not detect more test targets than lay people in
general, but they took longer than lay people on average to search and detect the NINAs
and WALDOs they found as shown in Table 1.

Table 1. Mean Search Time (Sec) and Standard Deviations (SD) to First Fixate the Target in
NINA and WALDO Test Pictures (n in parentheses, p<.01 for NINA targets).

NINA WALDO
Radiologists Lay People  Radiologists Lay People
Mean 16.20 (20) 9.99 (35) 26.24 (70) 22.44 (70)
SD 8.03 8.62 22.93 19.68

From these results we conclude that radiology expertise does not transfer to general search and
detection tasks such as are illustrated by the perceptual tests in which NINAs and WALDOs are
targets. This is true despite the similarities in perceptual-task requirements, complexity of
target/background images, and signal/noise ratios. Thus, radiology expertise must require very
specific perceptual and cognitive skills that develop primarily from experience reading medical x-
ray images. From this experience experts most likely generate schemata of prototypic normal and
various prototypic abnormals which are compared with new exemplars during image perception.
Our findings suggest that these expert radiology search and detection strategies do not transfer
effectively to search and detection tasks using non-medical images such as those that made up our
perceptual tests.

(6.5) THE RESIDENT STUDY. As mentioned in the introduction, we are currently
completing the Resident Study which provides background data on the performance of
residents during mammography rotations compared to experienced mammographers and
mammography techs (Nodine, Kundel, Orel, Conant, 1998, in progress). Detailed
analyses of the performance data and decision time data have been performed (see below).
These analyses reveal significant differences in perceptual discrimination, feature-
recognition and decision-making skills among three levels of expertise which shed light on
the need for systematic feedback training during the radiology residency experience. The
impact of this type of training on the mammography expertise of radiology residents will be
evaluated in a formal experiment after the development of CAVS.

(6.6) SUMMARY OF THE RESIDENT STUDY.

PURPOSE. Mammographers need guidelines defining perceptual limits for
differentiating malignant from benign lesions in order to adjust their decision making to
meet the stringent clinical diagnostic demands of breast screening without sacrificing
performance. We are exploring how training via clinical mammography rotation influences
several aspects of perceptual performance in breast screening by comparing three levels of
mammography expertise exemplified by mammographers, radiology residents and
mammography techs. The research question is: How does training affect residents’
accuracy in visually differentiating malignant from benign lesions in a simulated
mammography screening task?

METHOD.The task consisted of 150 digital mammograms from 75 cases combined
in two-view pairs. From this total of 75 image pairs there were 25 pairs containing 57
malignant lesions, 24 pairs containing 50 benign lesions and 26 pairs containing lesion-free
images. This 75-pair test set was administered to 19 residents undergoing rotation and




compared to 3 mammographers and 10 mammography techs. The diagnostic classification
of the lesions was verified by biopsy. Normals were lesion-free for 2 years. The two-view
pair of mammograms was displayed on a high-resolution (2k x2k, Tektronics)
workstation. The observer interacted with the display to decide whether each image view
contained (a) no malignant lesions and therefore was returned to routine screening, or, (b)
suspicious lesions indicating malignancy. Depending on this initial decision, the observer
either called up the next case, or, localized, classified and indicated decision confidence
about each detected lesion.

RESULTS. Because multiple findings were present and lesion localization was
critical for evaluation, performance was measured by AFROC and shown in Figure 1.
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CONCLUSIONS. Unlike ROC, AFROC takes into account localization and
classification of multiple breast findings. Our analysis points out weaknesses in training
radiology expertise during resident training. The main weakness is that radiology-residency
training does not stress accurate visual differentiation in localizing and classifying detected
breast lesions. This is reflected in AFROC performance which, when compared to
mammographers, was significantly lower for residents and equivalent to performance of
techs (p<.01, Sheffe test). Future studies will explore the use of computer-assisted visual
search (CAVS) as a training tool that provides systematic visual feedback and decision aids
to improve residents' detection and classification of distinctive pathologic features that
differentiate malignant from benign breast lesions.

(6.7) FOLLOW-UP OF RESIDENT STUDY. We have AFROC data on 19
residents, 3 mammographers and 10 radiology techs. By contrasting performance for these
different levels of training and experience, we can gain insights into the nature of expertise.
For example, we have already observed differences between the three groups in detection
strategies, use of confidence ratings and lack of understanding about trade offs between
TPs and FPs as a result of over-reading. Our results thus far on 19 residents seem to
indicate little change in performance as a function of degree of mammography rotation
mentoring experience as shown in Figure 2 (Residents only). Analysis of AFROC data
shows the residents clustered around an Al=.653 (except for one resident!).
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Performance of mammographers clustered around Al=.843. To try and understand the
differences, we are beginning to look at the number of correct lesion-detection pairings on
two views, CC and Oblique. The probability of detecting a pair of lesions on two views is
.83 for mammographers and only .56 for residents. This suggests that residents may have
difficulty predicting where to find a lesion in a second view, given a lesion detection in a
first view. Eye-position data back this up (Nodine, Kundel, Lauver, Toto, 1996), but more
eye-position data is needed and this is a good opportunity for Ms. Claudia Mello-Thoms to
learn how to use the ASL (Applied Science Laboratories) Eye-Head monitoring system.
We are currently working on transferring the localization database to the new PC computers
in order to analyze differences between residents and mammographers. We also want to
look at the accuracy of localizing breast lesions. We know that mammographers can
localize within about 3 mm of the true target. It is important for future work with AFROC
analysis to establish a localization accuracy criterion. We have yet to obtain the database
and do the corresponding analysis for residents. Finally, we have an interest in developing
a computer simulation using wire-mesh images of the breast to show correpondences
between lesions in two views. Ms. Mello-Thoms and Mr. Toto are developing a computer-
assisted teaching aid to predict lesion locations from one view to another.

Finally, in connection with the Resident Study, we have data on decision times which
should prove interesting when correlated with observer confidence ratings. We hypothesize
that "hard" diagnostic-image decisions take longer than "easy" decisions and preliminary
data support this. We have just begun to scratch the surface in our analysis. The goal of
these analyses and those indicated above is to describe differences in expertise between
residents and mammographers, and develop measures of performance that can be used to
quantify changes that result from CAVS training described in Objective 3.




(7) CONCLUSIONS

The primary goal of the project is to develop a mammography training tool that will
improve the perceptual and cognitive skills leading to mammographic expertise.
Prerequsites to this goal are an understanding of: (a) how mammographers are trained, (b)
what skills are required to carry out the task of detecting, classifying and diagnosing
abnormalities in mammograms, and (c) the effectiveness of current mammography training
measured by evaluating the performance of residents using a test-set of mammograms
representing various abnormalities. We have shifted the focus of the first-year's research
from the technical development of a computer-assisted training tool (Technical Objective 1)
to an analysis of the roles that training and experience play in developing image-perception
skills undertying mammography expertise. To this end, we have acquired and digitized a
mammogram test set of 75 cases and a mammogram training set of 200 cases, and carried
out the Resident Study (Technical Objective 2). The Resident Study was designed to
compare diagnostic performance across levels of expertise, and to establish a baseline
performance level for residents exposed to conventional mentor-guided training which will
be compared with CAVS training in project years 3 and 4.. The test set was administered to
3 mammographers, 19 residents and 10 mammography techs. The results of the Resident
Study reflect on the effectiveness of mentor-guided training by comparing resident
expertise with other levels of expertise. This shows, not surprisingly, that resident
performance in detecting and classifying breast lesions is significantly inferior to experts.
But more interestingly, it shows that resident performance is no better than that of
mammography techs! This finding begins to shed light on the importance of feedback
during training, and its impact on image-perception skills for detecting and classifying
breast lesions. The need for systematic feedback during mammography training is
suggested from these results, and the proposed CAVS provides systematic feedback which
may hold the key to more effective mammography training.
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ABSTRACT

Rationale and Objectives : The goal of this study was to determine if radiologists posses
superior visual search and analysis skills compared to lay people by testing radiologists and lay
people on non-radiologic visual tests containing hidden targets embedded in complex pictorial
scenes, but otherwise requiring no special training or experience to perform.

Materials and Methods : In two experiments, radiologists and lay people searched complex
pictorial scenes (NINA and WALDO drawings) for hidden targets. Eye-position was recorded
during search. Two measures of performance were obtained : accuracy of detecting targets as
measured by AFROC analysis; and, visual search efficiency as measured by eye-position analysis.

Results : There were no statistically significant differences in detection performance between
radiologists and lay people for either of the search tasks. Radiologists took longer on average to
search the images and to first fixate the targets than did the lay people. For both groups, true-
positive and false-positive decisions were associated with longer dwell times than true-negative
decisions. As with radiology search tasks, false negatives were also associated with longer dwell
times than the true negatives which may suggest a common perceptual differentiation mechanism.

Conclusions : Performance on two visual search and detection tasks indicate that radiologists do
not possess unique or superior visual skills compared to lay people. Radiology expertise is more
likely to be a combination of specific visual and cognitive skills derived from medical training and
experiences searching, detecting and deciding about the diagnostic significance of findings on
radiographs. Neither visual nor cognitive skills which characterize radiologic expertise carried
over to NINA and WALDO tasks.

Key Words : Visual search, detection, eye-position, expertise, visual tests




INTRODUCTION

There is a common assumption that radiologists are better visual analyzers than most of their
medical colleagues. Whether this visual skill is innate or acquired has been the subject of numerous
studies (1 - 5). Generally, results from perceptual tests tend to correlate fairly well with general
ratings of diagnostic abilities (2 - 5), but less well with specific diagnostic tasks such as pulmonary
nodule detection (1). Thus, the answer to this question is unfortunately not easy to determine,
primarily because innate visual skills quickly become contaminated by training and experience (6-
8). Furthermore, visual testers have generally assumed that the radiologist’s task is largely a visual
one.

There is also a great deal of cognitive interpretation that goes into the reading of a radiograph. For
example, in addition to searching for abnormalities, radiologists "read" medical images for
anatomic and pathological content as they search the image. This point is largely overlooked by
researchers who have developed visual tests. The radiologist’s report typically contains a
description the findings resulting from search, and an interpretation of the findings considered in
the context of the patient's history. This separation of description from interpretation in the report
provides radiologists with a framework for carrying out visual and cognitive aspects of the
diagnostic radiology task in much the same way as instructions provide observers with a
framework for carrying out an experimental test in the laboratory.

Artist Al Hirschfeld has been hiding the word NINA (his daughter’s name) in line drawings of
theatrical scenes that have appeared in "The New York Times" for over 50 years. The hide-and-
seek game of finding the name NINA in Hirschfeld's drawings illustrates basic perceptual
principles of detection, discrimination and decision-making commonly encountered in radiology
search tasks. Hirschfeld's hiding of NINA is typically accomplished by camouflaging the letters of
the name and blending them into scenic background details such as wisps of hair and folds of
clothing. In a similar way, pulmonary nodules and breast lesions are camouflaged by anatomic
features of the chest or breast image. Hirschfeld's hidden NINAs are sometimes missed because
they are perceptually integrated into a Gestalt overview of the picture, rather than differentiated
from background features during focal scanning. This may be similar to overlooking an obvious
nodule behind the heart in a chest x-ray image. Because it is a search game, Hirschfeld assigns a
number to each drawing to indicate how many NINAs he has hidden so as not to frustrate his
viewers. In the radiologists’ task, the number of targets detected in a medical image is presumed to
be determined by combining perceptual input with probabilities generated from clinical history and
viewing experience. Thus, in the absence of truth, searching for abnormalities in x-ray images
creates opportunities for recognition and decision errors (e.g., false positives and false negatives).

Reading medical images requires both search and interpretation of radiologic findings within an
anatomic image context. The task of searching, interpreting and reading the medical image
uniquely combines perceptual and cognitive skills that most test developers have failed to
appreciate. Interestingly, we have found experimental evidence indicating that observers have
difficulty carrying out both visual search and interpretation tasks simultaneously in a testing
situation. For example, in one study when observers were instructed to search for NINA, they had
mixed success finding the target (9). Afterwards, the observers were asked to describe the scenes
they had just searched. Interestingly, they could not describe the gist of the scene nor identify the
main characters even though they were familiar well-known actors who they later identified when
shown the drawings. Maybe this is why radiologists typically dictate the report while looking at the
radiograph, the implication being that search has revealed findings and the image is used as a
reference map during the generation of the report that both describes and interprets the findings.

The above illustration points out the need to analyze and identify task requirements before selecting
tests to measure and compare radiologists’ performance skills. It is clear that visual search skill is
one component of the radiologist’s task. Others include the ability to (a) disembed figures from




background as in hidden figures tests, (b) form an instantaneous Gestalt or global interpretation of
a scene to obtain a gist and identify regions of interest for search, (c) extract distinctive features that
signal perturbations in anatomic image scenery, and (d) weight the significance of distinctive
features extracted from visual input during search with hypotheses generated from experience in
diagnostic decision making.

We have looked for a test that taps these skills. This paper reports our experiments using two
visual search tasks that come close to meeting the task requirements in radiology listed above. We
compared radiologists with lay people searching art pictures to find hidden targets. The art pictures
do not presuppose any prior knowledge in searching for a target. This is a way of equating
observers for experience. The targets were the word NINA embedded in Al Hirschfeld's line
drawings of theatrical scenes (10), and color drawings of the character WALDO embedded in
people-cluttered scenic backgrounds (11). As with the anatomic scenery in radiographs, the
artistically-represented scenery in our test pictures typically acts to camouflage the target, and thus
the art-picture search tasks have some of the same characteristics as the radiographic search task. In
addition, both medical-image targets and the art-test targets have distinctive features that provide a
perceptual basis for visual differentiation of target from background. Finally, detection and
recognition of targets in both medical images and test pictures are sufficiently ambiguous that
observers can effectively provide confidence ratings for their decisions. Thus, we have used
standard detection measures to evaluate the test results.

To summarize, this paper examines the question of what kinds of visual skills are useful to
radiologists, and how training and experience influences these visual skills. We will present data
from two studies comparing visual skills of radiologists with lay people on visual search tasks in
which both groups are inexperienced. In each case, the subjects are required to search a picture and
find a hidden target. This task is not unlike searching a chest x-ray image for a lung nodule, or
mammogram for a breast lesion.

MATERIALS AND METHODS

Two types of picture search tasks were used, line drawings by artist Al Hirschfeld in which the
target was the word NINA embedded in the line drawing, and color drawings by the artist Martin
Handford in which the target figure was WALDO embedded among numerous colored line figures.
Radiologists and lay people were recruited as observers from the University of Pennsylvania and
the University of Arizona Medical Center. Five radiologists and 6 lay people from Penn served as
observers for the NINA test. Seven radiologists and 7 lay people from Arizona served as observers
for the WALDO test.

NINA TEST

Each observer was given a test booklet containing photocopies of 42 Hirschfeld drawings taken
from "The World of Hirschfeld" book (10) containing from O to 7 hidden NINAs (average = 2 per
picture). After an introduction and illustration of the NINA search task, observers were paced
through the test booklet at the rate of 60 sec per picture to find, circle and rate confidence in
detecting NINAs. A beeper sounded 10 sec before the time limit so that observers could indicate
any remaining uncircled NINAs and turn the page to a new picture. When a NINA was detected
and circled, observers were asked to rate their confidence in interpreting the line configuration as a
NINA (3 = Definite, 2 = Probably, 1= Maybe). The number below Hirschfeld’s signature that
indicated how many NINAs were hidden in the picture was removed so that observers did not
know how many NINAs to search for. At an average viewing distance of 40 cm, each 21.6 x 28
cm picture page subtended approximately 28 deg visual angle. The NINA targets ranged from 0.7
cm (< 1deg) to 6 cm (> 8 deg). A chest x-ray image viewed at the same distance subtends a visual
angle of approximately 42 deg and a 1 cm nodule is 1.4 deg. Eye position was monitored for a
subset of 3 NINA pictures viewed by 10 observers. All of the observers had little or no experience
with Hirschfeld's NINA drawings.
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WALDO TEST

After an introduction and illustration of the WALDO search task, observers were shown a set of 10
full-size 48 x 31 cm color poster pictures taken from the "Where's Waldo the Magnificent Poster
Book" (11). Each picture contained one WALDO plus some foils: Wilma, Wenda, Odlaw, and,
numerous other characters typically reported as WALDO (i.e., false positives) ranging in size from
0.5x 0.3 cm (1 deg) to 1.8 x 0.5 cm (3.4 deg). Observers were given up to 2 min maximum to
find and point out WALDO. Feedback was given by the experimenter (EAK) as observers
searched for WALDO. False positives were noted as such to the observers and the observers were
told to continue searching for the real WALDO. All observers knew: who WALDO was, what he
looked like, what color his clothes were, and the fact that WALDO was often partly obscured by
other people/things in the picture. Confidence ratings were obtained when a WALDO was detected,
however, observers did not use the entire scale and therefore the confidence rating data was
discarded. The full color poster pictures subtended a visual angle of approximately 46 deg at a 30
cm viewing distance, and the WALDO targets ranged from 0.7 cm (1.3 deg) to 2.3 cm (4.4 deg).

DATA ANALYSIS

Two measures of performance were obtained: accuracy of detecting targets; and, visual search
efficiency as measured by eye-position analysis. AFROC (Alternative Free Response Receiver
Operating Characteristic) analysis (12) was used for the NINA task because pictures typically
contained more than one target. So as not to be confused with ROC, Az, the area under the
AFROC, Al, is the estimated probability of any given true target being rated higher than the most-
suspicious non-target on the same image. For the NINA study, Al was estimated from the highest
rated correctly localized true positive responses on NINA relative to the highest rated false positive
per picture. For the WALDO study, the observers used the rating value 6 (definitely WALDO)
when they found a WALDO (a true positive) or a WALDO look-alike (false positive). They were
always convinced that they had definitely found WALDO even when they were wrong! Because
of this, the probability of a correct first choice localization could not be estimated. Therefore, Al
was estimated from the probability of the first correctly localized true positive response on
WALDO relative to all prior false positive responses per picture.

Analysis of eye-position data focused on three measures of search efficiency: search time to fixate
the target; total viewing time; and cumulative gaze duration (visual dwell). The eye position data for
NINA testing was limited to a subset of 10 observers (4 radiologists and 6 lay people) and 3
pictures. Four records were lost due to poor calibration making a total of 26 records. The eye-
position data from the WALDO test consisted of 7 radiologists, and 7 lay people each searching 10
pictures for a total of 140 records. The three measures of search efficiency were analyzed using t-
tests and analyses of variance.

A 4000SU Eye-Tracker (Applied Science Laboratories, Bedford, MA), which records pupil and
corneal reflections using an infra-red reflection source, was used to record eye position in both
studies. The system has an accuracy of about 1 deg. For initial calibration purposes in the present
studies, observers were seated in front the display and the observer's head was stabilized in a chin
rest. After initial calibration the chin rest was removed and the observer was allowed to change
position if desired. The 4000SU system comes with a head-tracker so observer head motion is
recorded and integrated to adjust for eye-position changes resulting from head motion.

A detailed account of the methods used to analyze the x,y fixation data from eye-position recording
can be found in Nodine et al. (13). For this study, if 50% of the area of a fixation cluster
overlapped a target location (defined by an area of 0.5 deg radius surrounding the target) it was
considered a "hit" (true-positive if actual target was pointed out and reported, false-negative if it
was not). The same criterion was used for false-positive reports, except the fixation cluster
overlapped the erroneously reported non-target location. True-negative decisions constituted those
areas with fixation clusters that did not contain a target or a false positive (i.e, scenic background).
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RESULTS

Table 1 shows AFROC A1 areas for finding NINA and WALDO. There was no statistical
difference in the proportion of targets detected between radiologists and lay people in either task.
Consistent with this finding, AFROC analysis of overall detection performance in the NINA task
resulted in Al=.569 (sd = .116) for radiologists and Al=.689 (sd = .136) for lay people. The
difference was not significant, t (9) = 1.58, n.s. For the WALDO task, the estimated A1 for
radiologists was .650 (sd= .086) and for lay people .690 (sd=.116). This difference was also not
significant, t(12)= .80, n.s.

Insert Table 1 Here

Data from eye-position recording was used to determine elapsed time until observers first fixated
NINA or WALDO (true positive or false negative) after search commenced. These data are shown
in Table 2. Figure 1 shows the scan pattern of a layperson, and Figure 2 shows the scan path of a
radiologist both searching for NINA in a scene taken from "The Apartment" by Al Hirschfeld (10).
The radiologist's search pattern contains a greater density of fixations per scanning unit (i.e., more
detailed) and covers less of the image than the lay person's circumferential search pattern. This
greater density was reflected in cumulative dwell for various decision outcomes which was longer
for radiologists than lay people in all but one case (see Table 4).

Insert Table 2 and Figs.1 and 2 About Here

This scanning strategy difference may account for the fact that lay people were faster than
radiologists fixating the NINA target, F(1,53) = 6.93, p <.01. The difference between
radiologists and lay people was not significant for WALDO. This may be due to the fact that the
experimenter gave observers feedback about errors during search, so that they continued to search
until they either found WALDO or time ran out. Figure 3 a. shows the scene "Where's Waldo
among the Monstrous Monsters" by Martin Handford (11), and Figure 3 b. shows the scan
pattern of a lay person. Figure 4 a. shows the same scene. Figure 4 b. shows the scan pattern of a
radiologist searching for a WALDO. The lay person repeatedly fixated WALDO (circled in the
lower left corner) and reported finding it after a brief 23 sec. search. The radiologist carried out an
extensive 2 min search of the scene but did not fixate or report finding WALDO.

Insert Figs. 3a & b And 4 a & b Here

Mean total viewing time is shown in Table 3. It was shorter for lay people than radiologists in the
WALDO task, but not the NINA task. Observers were given unlimited time up to 2 min to search
for NINA or WALDO. There were instances in both Hirschfeld and Handford pictures where a
target was not found. Because the Hirschfeld pictures contained multiple NINAs and Handford
pictures contained only one, rather than try to arbitrarily adjust the viewing times by adding a
constant time to reflect misses, we simply eliminated the misses from the analysis. Regardless of
whether or not an arbitrary times was added into the analysis, only on WALDO pictures was mean
total viewing time significantly shorter for lay people, F(1, 110) = 5.46, p < .05 (arbitrary times
for misses eliminated).
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Insert Table 3 Here

Table 4 shows the relationship between cumulative dwell spent on a true or false target location and
the correctness of observer's decision about whether a true NINA or WALDO was or was not
present at that location. Generally, observers in both NINA and WALDO tasks spent significantly
longer dwelling on locations from which a positive decision (TP, FP) was generated than on
locations from which a truly negative decision (TN) was generated (Sheffe test, p < .01). In
addition, when dwelling on locations from which a falsely negative decision (FN) was generated,
dwell significantly increase relative to a truly negative decision (Sheffe test, p <.01).

Insert Table 4 Here

DISCUSSION

There have been a number of attempts to try to correlate diagnostic ability of radiologists with a
variety of perceptual tasks (1 - 5), some successful, some not. Few if any studies have compared
radiologists to lay people on visual tasks that emulate what the radiologist does while searching and
interpreting an x-ray image for an abnormality. We used two art-search tasks which we believed
captured many of the characteristics of radiologic search, but did not require special training or
experience to perform. If radiologists were either innately, or by specific training, better searchers
and analyzers than lay people, the hypothesis was that the radiologists would perform better at the
generalized search task. In fact, what we discovered was the radiologists were no better at the
general search task than the lay people. What does this mean?

First, we assumed that the art-search tasks tap similar basic perceptual and cognitive skills of
visual search, detection and interpretation as radiology tasks searching for abnormalities. This may
not be the case, but before we accept this conclusion let us look at a second possibility.

Second, this study can be viewed as expanding on the nature of radiology expertise and how it
transfers from one task to another. Let us assume that the art-image task may have tapped similar
perceptual and cognitive skills, but that both radiologists and lay people lacked experience
searching and interpreting art targets. This would have led to the same pattern of results as our first
conclusion. We know from previous research that radiology expertise depends heavily on the
interaction of experience with training. For example, we have shown that it takes a 13 to 200 fold
increase in experience to effectively improve mammography screening performance during
mammography training (6). Recent research suggests that this range of expeience may be
underestimated by at least ten fold, and that during clinical mammography rotation, because of the
relatively low incidence of breast cancer, radiology residents rarely encounter a case of breast
cancer (14).

We know from a number of studies that radiologists search radiographs more effectively than non-
radiologists. For example, re-analysis of Kundel & La Follette's 1972 study (8) shows that
significantly fewer fixations were required to detect and correctly report lung lesions by
radiologists and radiology residents than medical students (mean= 5.21 fixations for radiologists &
residents vs. 13.27 fixations for medical students, F(1,23)= 5.76, p<.05). In this case, search
efficiency is reflected by length of the scanning pattern required to sample and report the lesions
correctly. This pattern of results has been repeatedly replicated (6; 8; 15; 16).

We hypothesize that because radiologists lacked experience searching for art targets, their
radiology expertise did not positively transfer for the limited art-testing experience. This finding
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confirms what the well-known learning theory of Osgood predicted long ago, namely, that degree
of transfer depends on the similarity of training and test situations (17). The similarities in task
requirements may have been outweighted by the manner in which perceptual and cognitive
processes interact in finding and disembedding novel target features from art-image backgrounds
compared to x-ray image backgrounds. What is critical in transfer from radiology to art tasks is the
observer's understanding about how the pictorial background acts to camouflage the target, and
this understanding requires a great deal of experience detecting, recognizing and deciding that a
target has been found. For the radiology task of searching for a lesion in a chest or breast x-ray
image, lesions are camouflaged primarily by occlusion and blending of the lesion with anatomic
background structures like blood vessels on end or dense breast parenchyma. In the case of
searching Hirschfeld's drawings, NINA is camouflaged by blending the letters of the name into
background scenery containing features designed to mimic alphabet letters. Finally, in the case of
Handford's drawings, WALDO is camouflaged primarily by mimicry. Subtle variations in the
color patterns and shapes that are distinctively assigned to WALDO are also used to create foils.
Thus, because different tasks call on different perceptual mechanisms for detecting and recognizing
targets, what we may have observed in the present study is a low degree of perceptual-learning
transfer by the radiologists so that they performed at a level of inexperienced lay people. In fact,
our data show that radiologists tended to find fewer art targets and miscalled more art targets
falsely than laypeople. From the standpoint of transfer of radiology expertise, neither perceptual
discrimination nor visual search skills carried over to the art tasks.

Finally, analysis of eye-position data revealed that when both radiologists and lay people missed
art targets, they typically spent significantly more visual dwell fixating the true target than negative,
non-target background locations on the images. This finding together with the ranking of dwell
times associated with true and false positive decisions has also been observed in visual search tasks
in radiology (7; 18;19). Thus it seems that at least in this respect, the art-image task was tapping
fundamental perceptual processes associated with visual search, detection and decision making.

These data have a couple of important implications for testing and training. The first implication
follows from our conclusion about transfer: radiologists may not be superior visual searchers and
analyzers in a general sense. They may be quite expert at searching radiologic images (8), but their
search and analysis skills do not transfer to new tasks having similar requirements. If this is true,
then this finding has direct consequences on two other situations : 1) selecting residents for
radiologic training (and developing tests for this selection process); and 2) methods of training
during radiology residencies. A recent study by Freundlich and Murphy (20) found that 93.5% of
medical students taking a radiology elective expected that they would be able to correlate their
interpretations of radiographs and other medical images with radiographic reports. But did they
consider what happens when a disagreement occurs? Obviously not. Even more surprising was the
finding that many medical students felt that a four-week elective adequately prepared them to
independently interpret radiographs. In all probability radiology residency programs do not share
this view. In fact, there are efforts being made to change the radiology residency curriculum (21 -
23) to better prepare residents for a career in radiology. The main question, of course, is exactly
what and how do we teach residents to be expert radiologists. Our results suggest that perceptual
skills for radiology require knowing what distinctive features differentiate abnormal from normal
anatomic structures (via medical training) and how these features are transformed by x-ray imaging
and interpreted within the context of diagnostic hypothesis testing and problem solving (via
radiologic experience). As our results suggest, these skills may in fact be specific to the situation of
interpreting radiographs, and may not generalize to other non-radiologic hide-and-seek search
tasks.

The testing and training issue is also interesting in light of the fact that many training institutions
may have to decrease the number of radiology residents in the near future (24). Our study raises
questions about the effectiveness of testing programs to predict which medical students would
make good radiologists. Our findings show how difficult it is to develop a testing situation that
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predicts how much perceptual learning carries over from radiology search to visual tests. On a
generalized search and analysis task, radiologists are no better than lay people. Bass and Chiles (1)
found that performance on perceptual tests had little correlation with diagnostic accuracy in
detecting pulmonary nodules. Berbaum et al. (2 - 5) did find a good correlation between perceptual
test performance and ratings of residents’ diagnostic skills, but one of the studies (3) found that the
correlation was poor during the first year, and stronger only after that.

These studies differ from the present study in that they did not compare radiologists with lay
people. They looked only at radiologists and those already training to be radiologists. Therefore,
the effects of training may have already influenced their skills to some degree. It is impossible to
tell whether the observers tested had different or better perceptual skills coming into their
residency, or whether the training enhanced or fostered already existing perceptual skills that had
not previously been tapped. Our study tested radiologists and lay people on a visual search task
and found little difference in performance, suggesting that if radiologists do possess superior
search skills they may only be specific to the radiologic search task and may not be evident on
other types of search tasks that do not deal with radiologic images.
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Table 1. AFROC A1 Area Values in NINA and Estimated A1 Area Values for the WALDO Test
Pictures.

NINA WAILDO
Radiologists Lay People  Radiologists Lay People
01 .526 .566 .600 .900
o2 511 728 .683 750
03 482 .528 .650 .650
o4 .552 874 .683 .550
05 172 .639 .650 .600
06 .802 .500 733
o7 .783 .650
Mean .569 .689 .650 .690
SD .136 116 .086 .116

18




Table 2 . Mean Search Time (Sec) and Standard Deviations (SD) to First Fixate the Target in
NINA and WALDO Test Pictures (n in parentheses).

NINA WALDO
Radiologists Lay People  Radiologists Lay People
Mean 16.20 (20) 9.99 (35) 26.24 (70) 22.44 (70)
SD 8.03 8.62 22.93 19.68
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Table 3. Mean Total Viewing Time (Sec) and Standard Deviations (SD) to Search for NINA or
WALDO Targets in Test Pictures (n in parentheses).

NINA WALDO
Radiologists Lay People  Radiologists Lay People
Mean 4490 (11) 44.66 (15) 61.42 (55) 48.02 (57)
SD 21.48 17.11 32.13 28.48
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Table 4. Mean Cumulative Dwell (ms) and Standard Deviations (SD)Associated with Various
Decision Outcomes for NINA and WALDO Test Pictures (n in parentheses).

True Positive Mean
SD
False Negative Mean
SD
False Positive Mean
SD
True Negative Mean
SD

NINA WALDO
Radiologists Lay People  Radiologists Lay People
2525 (14) 1393 (17) 1775 (55) 1225 (57)
1315 981 1354 676
1340 (8) - 1223 (7) 2773 (15) 2046 (13)

911 825 1425 1214
- -— 1585 (26) 1475 (20)
-— - 800 749
798 (64) 521 (57) 937 (9736) 993 (10421)
806 599 1641 1475
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FIGURE CAPTIONS

Figure 1. Scanpath of lay person searching for NINA in "The Apartment” by Al Hirschfeld. The
lay person carried out a clockwise circumferential scan and fixated the NINA at 9 sec.

Figure 2. Scanpath of a radiologist searching the same scene. The radiologist's scanpath got
tangled in the spaghetti being strained by Jack Lemon's tennis racket for 11.5 sec before moving
on. As a result, he did not fixate the NINA until 20 sec into the search. Notice that even though
the size of the NINA target is relatively large, because the letters are integrated into the structure of
the lamp, the target lacks peripheral conspicuity and therefore requires direct fixation in order to be
detected.

Figure 3 a. An example of a "Where's Waldo?" scene (Where's Waldo among the Monstrous
Monsters?"). The drawings used in the present experiment were the full-color 48 x 31 cm poster
size pictures. The reduced black-and-white photographs give a false impression of the actual search
task. However, the photographs do convey the density of pictorial detail present in the original.
Figure 3 b. The scanpath of a lay person. The lay person started search near the lower middle of
the picture (designated by the triangle) and reported finding WALDO after 23 sec of search.
WALDO is circled in the lower right corner of the picture and scanpath. Note the density of
fixations required to search the dense pictorial detail for WALDO.

Figure 4 a. The same scene. Figure 4 b. The scanpath of a radiologist. WALDO (circled) is in
the lower right corner of the scene. The radiologist began the search in approximately the same
location as the lay person but did not find WALDO (false-negative) during the 2 min search period,
even though he did fixate WALDO (as indicated by the circle) toward the end of search.
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Abstract. When radiologists search a medical x-ray image for an abnor-
mality, their eyes often fixate and refixate the true target, dwelling on it
for prolonged times, often without recognizing that they have discovered
the object of search. Monitoring the eye position of the radiologist pro-
vides the x and y coordinates of the dwelling location. This location can
be superimposed on the image and dynamically fed back to the radiolo-
gist for reevaluation. When this is done, the probability of recognizing
and reporting an abnormality is shown to be enhanced significantly. An
increase of 20% in observer performance is observed for radiologists
searching chest images for tumors after receiving perceptual feedback
compared to a second look without perceptual feedback. The true-
positive rate increased and the false-positive rate decreased. Perceptual
feedback represents a potentially significant technique for enhancing le-
sion recognition in radiology. © 1998 Society of Photo-Optical instrumentation En-
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1 Introduction

In medical x-ray imaging, tumors and fractures make up a
significant portion of the types of abnormalities to be de-
tected and recognized during search. In radiology, search
typically means visually scanning an x-ray image and de-
ciding whether or not an abnormality is present. The task is
a difficult one, and there is estimated to be about a 30%
miss rate!™ in radiology, with certain types abnormalities
being missed more than others (e.g., fractures in bone im-
ages). Our goal is to try and understand why radiographic
abnormalities are missed and how errors can be reduced
and performance increased. Eye-position analysis has been
a useful tool in helping us to (1) understand how visual
search is performed in radiology, (2) isolate the perceptual
and cognitive causes of error, and (3) design a perceptual
feedback system to enhance the recognition of missed ab-
normalities. One major assumption behind the use of eye-
position recording is that the amount of time the eyes spend
looking at an object reflects information processing, object
encoding and recognition.*"

2 Eye-Position Recording and Analysis

Complete details of the eye-position recording and analysis
methods can be found in Nodine et al.” For the studies
discussed in this paper, eye position was recorded either
with an Eye-Trac Model 210 or an Eye-Tracker 4000SU
(both from Applied Science Laboratories, Bedford, Massa-
chusetts). Both systems operate on the same basic principle.
The main difference between the two systems is that the
4000SU is capable of monitoring head movements, elimi-
nating the need for observers to maintain their head posi-
tion rigidly during eye-position recording. Both recording

Opt. Eng. 37(3) 813-818 (March 1998) 0091-3286/98/$10.00

systems are IR based and compute line of gaze and dwell
time on the basis of pupil and corneal reflection parameters.

Eye position is sampled every 1/60 s and the recording
system assigns an x,y coordinate to each sample. With the
4000SU system, the head tracker and eye tracker data are
integrated in real time so that the x,y coordinate data reflect
this integration. Fixations are then formed by grouping the
x and y coordinates using a running mean distance calcu-
lation having a 0.5 deg radius threshold. Clusters can then
be formed by grouping fixations, and cumulative clusters
can be formed by combining individual clusters. Typical
scan patterns on normal and abnormal chest images are
shown in Figure 1. The studies discussed in this paper used
cumulative clusters of dwell times.®

3 Visual Dwell and Diagnostic Decisions

The recognition of abnormalities in radiology can be very
difficult. Since the abnormality is typically hidden, it can-
not be detected either by peripheral pickup or by a chance
landing on the abnormality.9 Focal scanning by the high-
resolution central vision must systematically cover regions
of suspicion in the image that are likely to contain abnor-
malities. Once a target candidate is detected, it must be
visually scrutinized to integrate the imaged features into a
recognizable representation of the sought-after abnormality.
The process of detecting, integrating and testing a target
candidate for distinctive features, and deciding whether or
not to report it as an abnormality requires prolonged dwell-
ing on the region of interest during the course of scanning
the image. 0

Figure 2 shows a model of how visual dwell is related to
search, recognition and decision making. Dwell time comes
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Fig. 1 Scanpaths of radiologists looking at a normal chest image on
the left and an abnormal image on the right. The abnormal image
contains two patches of pneumonia indicated by the light gray shad-
ing in the darker gray of the lungs. The fixations, which typically last
from 200 to 300 s, are indicated by dots that are connected by lines.
The lines indicate the order in which fixations are generated. The
abnormal image shows a number of clusters of fixations while the
normal image is free from distinct clusters.

into the picture during the analysis and testing of a target
candidate for distinctive features, and can be thought of as
reflecting visual information processing. Using a signal de-
tection framework, visual dwell can be correlated with
positive and negative decisions made by the radiologist.

This correlation is accomplished by relating the dwell
times of cumulative cluster x and y locations with the x and
y image locations of abnormalities and the reports of the
viewer. If a cumulative cluster falls within 2.5 deg of a
reported or missed abnormality, it is associated with a true
positive (TP) or false negative (FN) decision, respectively.
If a cluster falls on an abnormality-free area erroneously
reported as containing an abnormality, it is associated with
a false positive (FP) decision. Any cluster falling on an
unreported abnormality-free location is defined by default
as a cluster associated with a true negative (TN) decision.

Within this framework, we have been able to show in
four separate experiments that prolonged visual dwell pre-
dicts the location of real (TP) and false (FP) abnormalities.
More importantly, prolonged dwell has been shown to pre-
dict the location of missed abnormalities (FNs).

MOVE EYES ¢

GLOBAL ANALYSIS
DETECTING PERTURBATIONS
IN PROTOTYPIC IMAGE

FOCAL ANALYSIS
SCRUTINIZING PERTURBATIONS FOR| NEGATIVE
TARGET FEATURES

v

[RECOGNITION OF TARGET CANDIDATE]

TEST TARGET CANDIDATE FOR
DISTINCTIVE FEATURES

GAZE DURATION

POSITIVE FIT NEGATIVE FIT
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IDECIDE RESPOVNSE OUTCOME I

RESPONSE

Fig. 2 Model of the relationship between scanning, dwelling and
decision making for the radiologic task of searching for lesions in
X-ray images.
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Table 1 Median cumulative cluster dwell times (in milliseconds) as-
sociated with TP, FN, FP, and TN decisions for the chest, mammog-
raphy, and bone studies.

Study TP FN FP TN
Chest 2291 1283 2091 547
Mammography 2249 1638 2003 892
Bone trauma 1286 938 895 532
Bone fractures 734 766 495 460

4 Eye-Position Recording Studies

The first of the four studies!! used chest images with tu-
mors as targets of search. Twelve radiologists searched 40
images (half with a single subtle tumor, half without) for 15
s each, while eye position was recorded. The second
study'? examined the eye-position data of six radiologists
searching 20 mammography cases (40 images, right and
left breast images of the craniocaudal or mediolateral ob-
lique views). Fifteen of the cases had one or more masses
and/or microcalcification clusters and five cases were ab-
normality free. Observers had unlimited search time. In the
third study,'® three bone radiologists and three orthopedic
surgeons searched 27 bone images for fractures and other
signs of trauma. Eighteen of the cases had subtle signs of
trauma (fracture, swelling, dislocation, joint effusions, liga-
mentous injury) and 9 were normal. Observers had unlim-
ited viewing time. The fourth study'* used nine bone im-
ages, seven with subtle fractures. Fifteen observers had 30 s
to search the images.

The median dwell times of cumulative clusters for each
decision category for these four experiments are presented
in Table 1 and the decision performance data are presented
in Table 2. The survival curves'® for the four sets of data
are shown in Figure 3. Survival analysis is used to charac-
terize the distributions of dwell times. It creates a plot that
represents the percentage of cumulative clusters that fall
within a given dwell interval.

The important thing to note from these data is the simi-
larity in dwell times and the shapes of the survival curves
associated with each of the decisions across the four types
of images and abnormalities studied. In general, TP and FP
decisions tend to be associated with the longest dwell
times—taking up to 1744 ms longer than TN decisions in
the case of chest images with tumors. Presumably this in-
creased time reflects feature extraction and decision making
(see Figure 1). TN decisions tend to be associated with the
shortest dwell times. FNs tend to fall between these two

Table 2 TP, FN, FP, TN percentages for the four eye-position re-
cording experiments performed.

Study TP FN FP TN
Chest 35 65 8 92
Mammography 81 19 33 67
Bone trauma 80 20 15 85
Bone fracture 70 30 41 59
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Fig. 3 Survival function curves associated with TP, FP, FN, and TN
decisions for the pooled cumulative cluster gaze durations in milli-
seconds for the (a) chest, (b) mammography, (¢} bone trauma, and
(d) bone fracture eye-position recording studies. The survival func-
tion indicates the probability of survival of cumulative fixation clus-
ters as a function of gaze duration (200 ms intervals). The vertical
lines indicate the percentage of decision clusters remaining after the
1000 ms threshold.

extremes and have dwell times significantly longer than
those for TNs (range=306 ms for bone fractures to 746 ms
for mammography).

5 Omission Errors and Visual Dwell

Dwell data, such as that already presented above, has also
been used to further classify FN errors (misses) into three
main types.'® Approximately 30% occur because of incom-
plete scanning of the image by the highly sensitive foveal
region of the retina. These are called scanning errors, due to
failure of perceptual input. Another 30% occur because of a
failure in the basic mechanism of object recognition. The
missed abnormality is fixated centrally and receives visual
dwell (under 1000 ms), but is not recognized as an abnor-
mality and is not reported. Finally, the remainder are deci-
sion errors in which abnormalities are fixated with a dwell
time sufficient for decision making, but are rejected and
hence not reported.

The key point to this classification of omission errors is
that we look at the FNs as covert negative decisions. There
is no overt response, but we assume that the prolonged
dwell associated with them indicates an implicit decision
not to respond. The classical signal detection framework
has done well to advance our understanding of overt TP
and FP responses, but has done little to aid our understand-
ing of negative responses. Eye-position recording helps us
understand errors of omission. At least 60% of FN deci-
sions are associated with dwell times (766 to 1638 ms)
significantly greater than dwell times associated with TN
responses (460 to 892 ms); and much of the time, the FN
dwells equal dwells associated with overt positive re-
sponses (495 to 2291 ms). Therefore, we can infer that

Table 3 Percentages of FN and TN decisions having dwell times
greater than 1000 ms for chest (tumors), mammography (microcal-
cifications and masses), bone trauma and bone fracture search. The
rightmost column shows the ratio of FNs to TNs that would be high-
lighted during perceptual feedback at the 1000 ms threshold.

Image Type FNs (%) TNs (%) FN/TN
Chest 59 18 3.3
Mammography 62 42 1.5
Bone trauma 44 37 1.2
Bone fracture 36 12 3.0

there is a fairly significant amount of visual processing of
the image at the FN location—sufficient to make a correct
overt response as we show in this paper. Due to a failure in
the recognition or decision process, however, the decision
threshold for a positive response is not reached and the
covert negative response is made.

6 Perceptual Feedback

Perceptual feedback, a technique that was developed!! to
improve observer accuracy, capitalizes on the relationship
between visual dwell and response outcomes. Perceptual
feedback was designed to give radiologists a second chance
to recognize missed lesions by utilizing the individual ob-
server’s own perceptual responses. Areas of prolonged
dwell are highlighted with a circle immediately after an
initial search of the image. The radiologist can review these
areas and revise the initial decision. The hypothesis is that
the second look at specific image locations will provide a
chance for the observer to process the available image in-
formation knowing that they received prolonged dwell, in-
dicating suspicious features. This unique perceptual feed-
back may be enough to shift the initial covert negative
response to an overt (correct) positive response.

From the survival curves in Figure 3 it can be seen that
in every case, if a 1000 ms threshold is used, a larger pro-
portion of FN decisions than TN decisions have dwell
greater than 1000 ms. Table 3 shows the percentages of
FNs versus TNs that have dwell times greater than 1000
ms. For chest images, the 1000 ms threshold would provide
a clear discrimination of FN and TN responses. The 1000
ms threshold would feedback about 59% of the FN image
areas, but only about 18% of the TN areas for chest images.
As Table 3 shows, the efficiency of the 1000 ms threshold
varies for different types of images, so different thresholds
may be required for successful perceptual feedback to work
effectively using other images than chest. For example,
with mammography, at 1000 ms the ratio of FNs to TNs is
1.5, but at 1200 ms it increases to 2.0.

There are a number of possible reasons why the numbers
in Table 3 differ. Each experiment used a different type of
radiographic image with different types of abnormalities to
search for. Bone fracture and chest studies limited total
search time to less than 30 s, while the bone trauma and
mammography studies used unlimited search times. The
unlimited search times increased the probability that the TN
areas would be fixated more than once, driving up the TN
dwell times compared to chest and fracture times. Driving
up the TN dwell times increased the probability that these

Optical Engineering, Vol. 37 No. 3, March 1898 815



Krupinski, Nodine, and Kundel: Enhancing recognition of lesions . . .

Table 4 TP, FN, FP, and TN percentages for the feedback
experiment—first look decisions, second look without feedback de-
cisions, and second look with feedback decisions.

Table 5 Dwell times in milliseconds associated with combinations
of decisions made prior to perceptual feedback and decisions made
with perceptual feedback. The fit categories refer to steps in the
model presented in Figure 1. These results are based on data from
Ref. 11.

Condition TP FN FP TN
First look 35 65 8 92 Decision after Perceptual Feedback
Initial
No feedback 37 63 1 89 Decision Positive Negative
Feedback 54 46 10 90
Positive TP to TP 2382 ms FP to TN 2199 ms
FP to FP 2556 ms TP to FN 2816 ms
Mean=2469 ms Mean=2247 ms
areai dhad dvzglls &r eati; tlha%n ]a(l))ooknlt;;r sohnllcc;redTN a;.e;s Definite positive fit Possible positive fit
wou'e pass the perceplua’ teedback tresiold, decreasing — yoqative TN to FP 1610 ms TN to TN 787 ms

the FN/TN perceptual feedback ratio. This implies that the
perceptual feedback algorithm may work most efficiently
on only the first 30 s of search, ignoring search that occurs
after the first 30 s.

For the perceptual feedback experiment11 considered
here, an algorithm was developed that analyzes the eye-
position data and determines which image locations re-
ceived cumulative clusters with dwell times exceeding
1000 ms. The observer was then given a second look at the
image with 5 deg circles outlining the image locations re-
ceiving prolonged dwell. The observers could revise any
decisions made during the first look at the image. The re-
sults were compared to a control condition in which ob-
servers were merely given a second look at the image with-
out perceptual feedback circles provided. Six radiologist
observers participated in the study, searching 40 chest im-
ages, 20 with one to three tumors and 20 without.

The decision data were analyzed using alternative free
response operating characteristic (AFROC) techniques. The
measure of performance in AFROC analysis is area under
the AFROC curve or Al (Al ranges from O for chance
performance to 1.0 for perfect performance). The Al for
the initial look at the image was 0.495 and 0.540, respec-
tively, for the perceptual feedback and control conditions.
After perceptual feedback or the second look without per-
ceptual feedback, Al was 0.618 and 0.504, respectively.
For the control condition, the change in performance was
not statistically significant. For the perceptual feedback
condition, the nearly 20% improvement in performance
was statistically significant using a ¢ test for paired obser-
vations on the AFROC Al results (r=40.38, df=5, p
<0.001, where df indicates degrees of freedom). This dif-
ference indicates that perceptual feedback significantly im-
proved recognition of tumors in chest images. The decision
performance data are presented in Table 4. Note the nearly
20% increase in the TP rate for the feedback versus second
look without feedback conditions.

Table 5 shows the dwell times associated with the vari-
ous decision changes made with perceptual feedback. The
change decisions (e.g., FN to TP) have dwells that fall in-
termediate between the positively maintained decisions
(i.e., TP to TP, FP to FP) and the negatively maintained
decisions (i.e., TN to TN, FN to FN). Speculation about the
processing of negative decisions is inferred and are thus
determined by default. The TN to TN combinations are
based on the default decision not to report an abnormality-
free image area as negative. These decisions would follow
the negative path in Figure 2. The TN default decisions are
typically fixated by one or more clusters of fixations that
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FN to TP 1933 ms
Mean=1710 ms
Possible negative fit

FN to FN 1230 ms
Mean=1008 ms
Definite negative fit

required an average of 787 ms. The gaze duration of two
out of three decisions that could be designated negative fit
decisions in Figure 2 (TN to FP and FN to TP) changed to
positive after reevaluation during the perceptual feedback
view. Changing from an initially negative to a positive de-
cision (true or false) added an average 763 ms of additional
information processing to a default negative decision.
Falsely maintaining a negative decision (FN to FN) added
443 ms of additional information processing to a default
negative decision. This dwell variation presumably reflects
a difference in information processing between fixating and
recognizing or not recognizing an abnormality that is in the
image. The increase in FN dwell may be required to dis-
embed clutter obscuring the abnormality, but the point is
that the region not reported contained a true abnormality
and attracted prolonged visual dwell.

A series of follow-up experiments to the perceptual
feedback experiment demonstrated that perceptual feed-
back may be aiding abnormality recognition in two ways:
by locating potential target areas and by enhancing the per-
ception of targets. By comparing viewing of image loca-
tions with and without the circle highlight, it was found that
when the circle was present, fixations tended to be less
dispersed (0.89 versus 1.13 deg; F(1,3)=14.43, p<0.05;
analysis of variance test) and they tended to fall directly on
the abnormality more often (15 versus 8%) than when the
circle was absent. The circle may be functioning as a fidu-
cial marker for the visual-attention system, giving it a spe-
cifically bound region within which to focus or allocate its
limited resources, producing a local perceptual enhance-
ment effect.

17,18

7 Discussion

Why does perceptual feedback enhance performance to
such a significant degree, when other methods of cueing in
radiology [e.g., clinical history prompts,’®2! checklists,??
dual reading,”® CAD (Refs. 24 to 29)] have reported
equivocal results? One reason may be that perceptual feed-
back uses one decision maker to reevaluate cued locations
based on the radiologist’s own perceptual responses. Other
methods, such as CAD and dual reading, use two indepen-
dent decision makers and require a combination of deci-




Krupinski, Nodine, and Kundel: Enhancing recognition of lesions . . .

sions from these two independent sources. For the radiolo-
gist, reviewing the CAD results or the opinion of another
radiologist involves examining the image again and possi-
bly paying attention to areas that were not considered in
their own initial search of the image. This requires further
information processing and in some cases a completely new
decision to be made. With perceptual feedback, it is a re-
consideration of a decision that the same radiologist had
already made.

Cueing studies from the psychology literature g-
gest another reason why perceptual feedback may work so
well. Perceptual feedback provides a direct cue—a circle
that is physically superimposed on the radiographic image.
Cueing methods such as clinical history use indirect cues
such as ‘‘check the third interspace on the chest,”” which do
not physically change the image. The physical aspect of the
perceptual feedback cue may be an important factor in why
it works so effectively. A recent study by Cheal and
Gregory™® suggests that cueing not only facilitates target
recognition, but it also reduces noise from other nontarget
features in the display. The targets in this study were
simple geometric shapes in a background of similar geo-
metric shapes, but the same result was found in a study
using radiographic images. Krupinski et al.3* used chest
images with tumor targets and demonstrated that cueing
reduces significantly the effects of noise from nontarget
features outside the region of the perceptual feedback
circle. In fact, the feedback circle cue was so effective that
if another tumor was located outside of the feedback circle,
detection of the outside tumor was reduced significantly.

The studies presented here demonstrated that perceptual
feedback can enhance significantly the detection and recog-
nition of tumors in radiographic chest images. Based on the
similarities in visual dwell data and the survival curves for
lesions in mammography and fractures and trauma in bone
images, it is quite likely that perceptual feedback will meet
with the same success in these and other types of radio-
graphic images. With advances in remote eye-position re-
cording systems and techniques, perceptual feedback could
find a place in the clinical environment.

30-32 su

Acknowledgments

This work was supported in part by grants from the NCI,
USPHS (CA-32870), the U.S. Army MRMC, the Depart-
ment of Defense (BC-961120) and Toshiba Medical Sys-
tems, Tokyo, Japan.

References

1. H. L. Kundel, ‘Perception errors in chest radiography,”” Semin.
Respir. Med. 10, 203-210 (1989).

2. R.E. Bird, T. W. Wallace, and B. C. Yankaskas, ‘‘Analysis of cancers
Exngs;;? at screening mammography,”’ Radiology 184, 613-617

1992).

3. R. T. Dahlen and H. T. Foley, ‘‘Medical malpractice claims in diag-
nostic radiology: update (letter),”’ Radiology 170, 277 (1989).

4. R. S. Pillalamarri, B. D. Barnette, D. Birkmire, and R. Karsh, *‘Clus-
ter: a program for the identification of eye-fixation-cluster character-
istics,”” Behav. Res. Meth. Instrum. Comput. 25, 9-15 (1993).

5. J. M. Henderson, K. K. McClure, S. Pierce, and G. Schrock, ‘‘Object
identification without foveal vision: evidence from an artificial
scotoma paradigm,” Percept. Psychophys. 59, 323-346 (1997).

6. G. R. Loftus and N. H. Mackworth, ‘‘Cognitive determinants of fixa-
tion location during picture viewing,”’ J. Exper. Psychol. Hum. Per-
cept. Perform. 4, 565-572 (1978).

7. C. F. Nodine, H. L. Kundel, L. C. Toto, and E. A. Krupinski, ‘‘Re-
cording and analyzing eye-position data using a microcomputer work-
station,’’ Behav. Res. Meth. Instrum. Comput. 24, 475-485 (1992).

8. C. F. Nodine, H. L. Kundel, J. Polikoff, and L. Toto, ‘‘Using eye
movements to study decision making of radiologists,”” in Eye Move-
ment Research: Physiological and Psychological Aspects, G. Luer, U.
Lass, J. Shallo-Hoffman, Eds., pp. 349-363, Hogrefe, Gottingen, Ger-
many (1988).

9. H. L. Kundel, C. F. Nodine, D. Thickman, and L. Toto, ‘‘Searching
for lung tumors: a comparison of human performance with random
and systematic models,”’ Invest. Radiol. 22, 417-422 (1987).

10. C. F. Nodine and H. L. Kundel, ‘‘Computer-assisted perception aids
pulmonary-nodule detection,’’ in Medical Imaging, Proc. SPIE 2166,
55-58 (1994).

11. H. L. Kundel, C. F. Nodine, and E. A. Krupinski, ‘‘Computer-
displayed eye position as a visual aid to pulmonary tumor interpreta-
tion,”” Invest. Radiol. 25, 890-896 (1990).

12. E. A. Krupinski, ““Visual scanning patterns of radiologists searching
mammograms,”’” Acad. Radiol. 3, 137-144 (1996).

13. E. A. Krupinski and P. J. Lund, “‘Differences in time to interpretation
for evaluation of bone radiographs with monitor and film viewing,”
Acad. Radiol. 4, 177-182 (1997).

14. C. Hu, H. L. Kundel, C. F. Nodine, E. A. Krupinski, and L. C. Toto,
‘‘Searching for bone fractures: a comparison with pulmonary tumor
search,’’ Acad. Radiol. 1, 25-32 (1994).

15. R. C. Elandt-Johnson and N. L. Johnson, Survival Models and Data
Analysis, John Wiley and Sons, New York (1980).

16. H. L. Kundel, C. F. Nodine, and D. P. Carmody, ‘‘Visual scanning,
pattern recognition and decision-making in pulmonary tumor detec-
tion,”” Invest. Radiol. 13, 175-181 (1978).

17. E. A. Krupinski, C. F. Nodine, and H. L. Kundel, ‘A perceptually
based method for enhancing pulmonary tumor recognition,”” Invest.
Radiol. 28, 289-294 (1993).

18. E. A. Krupinski, C. F. Nodine, and H. L. Kundel, ‘‘Perceptual en-
hancement of tumor targets in chest x-ray images,”” Percept. Psycho-
phys. 53, 519-526 (1993).

19. K. S. Berbaum, E. A. Franken, K. L. Anderson, D. D. Dorfman, W. E.
Erkonen, G. P. Farrar, J. J. Geraghty, T. J. Gleason, M. E. MacNaugh-
ton, M. E. Phillips, D. L. Renfrew, C. W. Walker, C. G. Whitten, and
D. C. Young, ‘““The influence of clinical history on visual search with
?ingle) and multiple abnormalities,”” Invest. Radiol. 28, 191-210

1993).

20. U. O. Aideyan, K. Berbaum, and W. L. Smith, ‘‘Influence of prior
radiologic information on the interpretation of radiographic examina-
tions,”” Acad. Radiol. 2, 205-208 (1995).

21. K. White, K. Berbaum, and W. L. Smith, ‘“The role of previous ra-
diographs and reports in the interpretation of current radiographs,’”
Invest. Radiol. 29, 263-265 (1994).

22. D. J. Getty, R. M. Pickett, C. J. D’Orsi, and J. A. Swets, ‘‘Enhanced
interpretation of diagnostic images,’”” Invest. Radiol. 23, 240-252
(1988).

23. C. A. Beam, ‘‘Effect of human variability on independent double
Eeadjn)g in screening mammography,”” Acad. Radiol. 3, 891-897

1996).

24. M. D. Mugglestone, R. Lomax, A. G. Gale, and A. R. M. Wilson,
‘“The effect of prompting mammographic abnormalities on the human
observer,”” in Digital Mammography *96, K. Doi, M. L. Giger, R. M.
Nishikawa, R. A. Schmidt, Eds., pp. 87-92, Elsevier, New York
(1996).

25. M. L. Giger, ‘‘Computer-aided diagnosis,”” in A Categorical Course
in Physics. Technical Aspects of Breast Imaging, A. G. Haus and M.
.g. Ya§fe, Eds., pp. 272-298, RSNA Publications, Oak Brook, IL

1993).

26. W. Zhang, K. Doi, M. L. Giger, R. M. Nishikawa, and R. A. Schmidt,
‘‘An improved shift-invariant artificial neural network for computer-
ized detection of clustered microcalcifications in digital mammo-
grams,”’ Med. Phys. 23, 595-601 (1996).

27. N. F. Vittitoe, J. A. Baker, and C. E. Floyd, ‘‘Fractal texture analysis
in computer-aided diagnosis of solitary pulmonary tumors,”” Acad.
Radiol. 4, 96-101 (1997).

28. H. Yoshida, K. Doi, R. M. Nishikawa, M. L. Giger, and R. A.
Schmidt, “‘An improved computer-assisted diagnostic scheme using
wavelet transform for detecting clustered microcalcifications in digital
mammograms,’’ Acad. Radiol. 3, 621-627 (1996).

29. E. A. Krupinski and R. M. Nishikawa, ‘‘Comparison of eye position
versus computer identified microcalcification clusters on mammo-
grams,” Med. Phys. 24, 17-23 (1997).

30. B. J. A. Krose and B. Julesz, ‘“The control and speed of shifts of
attention,”’ Vis. Res. 29, 1607-1619 (1989).

31. C. W. Eriksen and Y. Yeh, ‘‘Allocation of attention in the visual
?eld,’; J. Exper. Psychol. Hum. Percept. Perform. 11, 583-597

1986).

32. G. Chastain, M. Cheal, and D. R. Lyon, ‘‘Attention and nontarget
effects in the location-cueing paradigm,’’ Percept. Psychophys. 58,
300-309 (1996).

33, M. L. Cheal and M. Gregory, ‘‘Evidence of limited capacity and
noise-reduction with single-element displays in the location-cueing
1()aradi)gm,” J. Exper. Psychol. Hum. Percept. Perform. 23, 51-71

1997).

Optical Engineering, Vol. 37 No. 3, March 1898 817



Krupinski, Nodine, and Kundel: Enhancing recognition of lesions . . .

34. E. A. Krupinski, C. F. Nodine, and H. L. Kundel, ‘‘Perceptual en-
hancement of tumor targets in chest x-ray images,’’ Percept. Psycho-
Pphys. 53, 519-526 (1993).

Elizabeth A. Krupinski received her un-
dergraduate degree in psychology from
Cornell University and her MA and PhD
degrees in experimental psychology from
Montclair State College and Temple Uni-
versity. She was a research specialist for 5
years with the University of Pennsylvania
Department of Radiology and is currently
a research associate professor with the
Departments of Radiology and Psychol-
ogy at the University of Arizona, where
she has been for 5 years. Her main interest is understanding the
perceptual and decision-making strategies of radiologists searching
images for lesions, and using this information to understand and
reduce errors in radiology. In addition to general issues of observer
performance, Dr. Krupinski is interested in performance and ergo-
nomic issues associated with reading radiologic images from work-
stations.

Calvin F. Nodine received his BA and
MA degrees in psychology from Bucknell
University in 1954 and 1959, respectively,
and his PhD in experimental psychology
from the University of Massachusetts in
1962. Dr. Nodine is currently a research
professor of radiologic science with the
University of Pennsylvania. He is currently
working on computer-assisted perception
of medical images.

818 Optical Engineering, Vol. 37 No. 3, March 1998

Harold L. Kundel received his AB and
MD from Columbia University and his resi-
dency training in radiology from Temple
University. During a fellowship in the
Radiology-Physiology ~ Laboratory  at
Temple University, he became interested
in eye-position recording as a method for
studying the source of perceptual error in
radiology. This interest broadened into
studies of the use of observer perfor-
mance methodology, including statistical
decision theory, for the evaluation of emerging digital imaging tech-
nology. He is currently the Matthew Wilson Professor of Research
Radiology at the University of Pennsylvania where he is working on
modeling and evaluating picture archiving and communication sys-
tems as well as visual search.




